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Abstract. There are theoretical and experimental evidences that show that the cluster model, consisting
of a dinuclear system, is capable of explaining several features of deformed heavy nuclei. Examples are the
fusion to super-heavy nuclei and the nuclear-structure effects arising from parity splitting in alternating
rotational parity bands, especially of the actinide nuclei. The model developed by Shneidman et al. has
been able to explain the parity splitting in the actinides using the cluster model in which oscillations in
mass asymmetry and relative motion were considered. On the other hand, Hess and Greiner developed a
model for nuclear molecules in which the degrees of freedom of butterfly, belly-dancer–type motions, γ- and
β-vibrations of individual nuclei were incorporated. The purpose of this work is to extend the model of
Shneidman et al. to include some of the degrees of freedom in the work of Hess et al. and, in addition,
to consider nuclear molecular rotations and the coupling of these degrees of freedom among themselves,
arising from mass asymmetry.

PACS. 21.60.Ev Collective models – 21.60.Gx Cluster models

1 Introduction

The cluster model consisting of a dinuclear system has
been shown both on theoretical and experimental grounds
to be capable of explaining some features of deformed nu-
clei having cluster properties [1]. Examples of these are
the fusion to super-heavy atomic nuclei [2] and nuclear-
structure effects such as parity splitting in alternating par-
ity rotational bands of the actinide nuclei [3]. The latter
arise from nuclei that possess reflection asymmetric shapes
in which the ground-state positive- and negative-parity
states considered together do not form undisturbed rota-
tional bands as is the case for asymmetric molecules but in
which the negative-parity states are shifted up in energy
with respect to the positive-parity states for small spins.

The theory developed by Shneidman, Adamian, An-
tonenko, Jolos and Scheid, based on the cluster model in
which oscillations in mass asymmetry and relative motion
were taken into account, has been successful in explaining
parity splitting in the actinides [3].

On the other hand, Hess and Greiner developed a col-
lective model of nuclear molecules whereby several degrees
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of freedom including butterfly, belly-dancer–type motions,
γ- and β-vibrations of individual nuclei were included [4].
This model was successfully applied to the 238U-238U sys-
tem.

The purpose of this work is to extend the model in
ref. [3] to include other degrees of freedom described in
ref. [4] such as the butterfly motion and the β-vibrations
of each dinuclear component as well as rotations of the
nuclear molecule and the coupling of these degrees of free-
dom among themselves, arising from the mass asymmetry
of the system.

2 The Hamiltonian

In the description of the formation of nuclear molecules
in heavy-ion reactions, deformation effects play an impor-
tant role. According to the model developed by Greiner
and co-workers [5], nuclei approach each other in different
orientations and when they touch, the interaction between
Coulomb repulsion and nuclear attraction creates a poten-
tial bag. The nuclear interaction is simulated by surface
interaction. In order for contact to be possible, different
energies are required for distinct orientations. In extreme
cases such as the pole-pole and equator-equator orienta-
tions of the nuclei, the Coulomb energy during contact
is least and largest, respectively, due to different inter-
nuclear distances. Because the overlap in surface area is
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Fig. 1. Schematic behaviour of the dinuclear potentials as a
function of the relative distance R and dinuclear orientation.
Because the overlap in surface area is greater in the equator-
equator orientation, the nuclear attraction is stronger and, con-
sequently, the molecular potential has a deeper well than in the
pole-pole orientation.

          Xm

 

R1             Z1

R2

1φ
R
 

Zm

 ( )1
2

1
0

11

,

),(

aa

orγβ
 2
φ ( )

( )2
2

2
0

22

,

,

aa

orγβ

Ym        Z2

Fig. 2. Illustration of the molecular reference frame at the
touching point, showing the symmetry and principal axes of
rotation. The angles φ1 and φ2 designate the orientations of
the nuclei to the molecular axis Zm along which the relative
separation of centres R is defined.

greater in the equator-equator orientation, the nuclear at-
traction is stronger and, consequently, the molecular po-
tential is deeper than in the pole-pole orientation (see
fig. 1). In this work we shall consider the pole-pole ori-
entation, as it is lower in energy than the equator-equator
orientation.

In order to define the butterfly degree of freedom, we
refer to fig. 2 [4]. The molecular frame is represented by
the coordinates Xm, Ym, Zm. The system of principal
axes of the nuclei in general does not coincide with the
molecular frame. The distance R between the nuclei is
defined along the molecular Zm-axis and it is assumed
that (R − R0) � R0, where R0 is the minimum position
of the relative potential energy as a function of R.

For prolate nuclei, as being considered here, R1 and R2

denote the radii along their respective symmetry axes. Let
φ1 and φ2 be the orientations of the nuclei with respect to
the molecular frame. Assuming that the angles are small,

i.e. |φ1| � 1 and |φ2| � 1, there results

sin |φ2|
sin |φ1| ≈

R1

R2
or |φ2| ≈ |φ1|R1

R2
.

But φ2 has the opposite sign of φ1, and choosing φ1 = ε
to be the butterfly mode, we obtain φ2 = − (R1/R2) ε.
The notations (βi, γi) or (ai

0, a
i
2), i = 1, 2, denote β- and

γ-vibrations, respectively, of each dinuclear component.
Other approximations involve expanding the moments

of inertia of each dinuclear component in terms of
Biβ

2
0i/(µR

2
0), where β0i (i = 1, 2) are the ground-state de-

formation parameters, Bi (i = 1, 2) the collective inertia
parameters and µ the reduced mass [4]. The Biβ

2
0i/(µR

2
0)

quantity is of the order of 1/30 for all nuclei and hence
the expansion of the moments of inertia is a good approx-
imation [4].

As earlier indicated, the dinuclear system is considered
to be asymmetric, with each nucleus having different radii
R1 and R2. In addition, apart from the butterfly motion,
we consider here only β-vibrations without γ-vibrations.

The total Hamiltonian operator has the following
structure:

Ĥ = ĤηR + Ĥηεrot + Ĥξ1 + Ĥξ2 , (1)

where

ĤηR = − �
2

2BRR

∂2

∂R2
− �

2

2Bηη

∂2

∂η2
− �

2

BηR

∂2

∂R∂η
+ U(R, η)

(2)
describes the coupling between the mass asymmetry de-
grees of freedom η, defined by η =(A1−A2)/(A1+A2), and
the relative motion described by R. The potential U(R, η)
describes the potential energy of the dinuclear system.

The operator

Ĥηεrot =
�

2

2µR2
(L̂2 − L̂′2

3 ) +
�

2L̂′2
3

6
[
B1β2

01 +
(

R1
R2

)2

B2β2
02

]
ε2

− �
2

6
[
B1β2

01 +
(

R1
R2

)2

B2β2
02

] ∂2

∂ε2

− �
2

24
[
B1β2

01 +
(

R1
R2

)2

B2β2
02

]
ε2

+
1
2
Cεε

2 (3)

describes rotations of the molecular system and the cou-
pling of rotations to the butterfly motion as well as to
mass asymmetry, implicitly contained in the reduced mass
µ, the collective inertia parameter Bi (i = 1, 2) and the
dinuclear radii Ri (i = 1, 2) (see later). The quantity Cε

is the stiffness parameter for the butterfly motion. Other
quantities appearing in eq. (3) include the total angular
momentum L̂ and the third component of the angular
momentum L̂′

3 along the rotating intrinsic (body-fixed)
symmetry axis joining the centres of the two nuclei.

The Hamiltonian operators occurring in eq. (1),

Ĥξi
= − �

2

2Bi

∂2

∂ξ2
i

+
1
2
Cξi

ξ2
i (i = 1, 2) (4)
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Fig. 3. Schematic representation of the dinuclear potential
energy as a function of R and η, showing the minimum at R0

and η0 about which U(R, η) may be expanded.

describe the β-vibrations in the harmonic approximation
of each dinuclear component.

The eigenvalue equation arising from the application
of the total Hamiltonian operator (1) on an eigenstate
may be solved by the method of the time-independent
perturbation theory. For this to be possible a few more
approximations need to be introduced, so that the total
Hamiltonian can be reduced to an unperturbed part that
is simple and straightforward to solve exactly, and a small
part that can be solved by the method of stationary per-
turbations.

First, we neglect in eq. (2) the term proportional to
the inverse mass BηR, since this has been shown to be
negligible compared to the others [6].

Second, we expand the potential energy U(R, η) in
eq. (2) in powers of R − R0 and η − η0 about the min-
imum value of the potential at R = R0 and η = η0 up to
second-order terms (see fig. 3).

Third, the masses µ, BRR and Bηη depend on the mass
asymmetry coordinate η and are defined by [6]

µ = M
4 (1− η2),

BRR = M
4 (1− η2),

Bηη = M
4

(
V

πR2
n
R−R2

)
,




(5)

where M is the total mass, V is the total volume and
Rn is the neck radius during mass transfer in heavy-ion
collisions. We assume small orientations of the nuclei with
respect to the molecular frame. The radii of the nuclei are
given by

Ri = r0iA
1/3
i = r0i

(
A

2

)1/3

(1± η)1/3 , i = 1, 2 . (6)

Since the masses appear as inverses in the expression
for the Hamiltonian, an expansion of (1 − η2)−1 about
η = η0 is made up to first order of small quantities.

Finally, because the nuclear radii are defined by eq. (6),
an expansion of (R1/R2) which appears in the Hamilto-
nian (eq. (3)) may be made about η = η0 up to first-order
terms in (η − η0).

When these approximations are taken into account,
the total Hamiltonian operator defined in eq. (1) splits

into two parts: a main part (unperturbed Hamiltonian)
and a small part (perturbed Hamiltonian). This may be
cast in the form

Ĥ = Ĥ(0) + Ĥ ′ , (7)

where

Ĥ(0) = Ĥ
(0)
R + Ĥ(0)

η + Ĥ
(0)
ηεrot + Ĥξ1 + Ĥξ2 , (8)

Ĥ
(0)
R = − �

2

2µ0

∂2

∂R2
+

1
2
CR0(R−R0)2 , (9)

Ĥ(0)
η = −�

2

2p
∂2

∂η2
+

1
2
Cη0(η − η0)2 + U(R0, η0) , (10)

Ĥ
(0)
ηεrot =

�
2

2µ0R2
0

(L̂2 − L̂′2
3 )

+
�

2(4L̂′2
3 − 1)

24
[
B1β2
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(

1+η0
1−η0

)2/3

B2β2
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]
ε2

− �
2

6
[
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1+η0
1−η0

)2/3

B2β2
02

] ∂2

∂ε2
+

1
2
Cεε

2 .

(11)

The constant p = Bηη(R0, η0) occurring in eq. (10) is
defined in terms of eq. (5), while µ0 = M

4 (1 − η2
0). The

Hamiltonian Hξi
(i = 1, 2) has been defined in eq. (4).

The perturbed Hamiltonian is given by

Ĥ ′ = Ĥ ′
R + Ĥ ′

η + Ĥ ′
ηεrot , (12)

where

Ĥ ′
R = −η0(η − η0)

1− η2
0

�
2

µ0

∂2

∂R2
, (13)

Ĥ ′
η =

�
2

2p2
(q1(η − η0) + q2(R−R0))

∂2

∂η2
, (14)

where we introduced q1 = (∂Bηη/∂η)R0,η0 and q2 =
(∂Bηη/∂R)R0,η0 with Bηη(R, η) defined in eq. (5).

Furthermore, we have

Ĥ ′
ηεrot =

(
η0(η − η0)
1− η2

0

− R−R0

R0

)
�

2

µ0R2
0

(L̂2 − L̂′2
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+Q

(
η − η0

1− η2
0

){
1
6

∂2

∂ε2
− (4L̂′2

3 − 1)
24ε2

}
, (15)

where the constant Q is defined by

Q =
4
3

(
1+η0
1−η0

)2/3

B2β
2
02�

2

[
B1β01 +

(
1+η0
1−η0

)2/3

B2β2
01

]2 . (16)
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3 Solution of the eigenvalue problem

The eigenvalue equation of the unperturbed Hamiltonian
operator is

Ĥ(0)
∣∣ϕ(0)

n

〉
= E(0)

n

∣∣ϕ(0)
n

〉
. (17)

Similarly to the procedure outlined in ref. [4], we as-
sume a separable product solution of the form

ϕ(0)
n (θj , η, ε, R, ξ1, ξ2) = DI∗

MK(θj)χ(ε)g(η)g(R)g(ξ1)g(ξ2),
(18)

where θj (j = 1, 2, 3) denote the Eulerian angles.
The g-functions occurring in eq. (18) are the linear

harmonic-oscillator wave functions because their corre-
sponding Hamiltonians Ĥ

(0)
R , Ĥ

(0)
η , Ĥξ1 ,Hξ2 defined, re-

spectively, by eqs. (9), (10) and (4) are harmonic-oscillator
Hamiltonians.

In view of the eigenvalue equation,


�
2

2µ0R2
0

(L̂2 − L̂′2
3 )

+
�

2L̂′2
3

6
[
B1β2

01 +
(

1+η0
1−η0

)2/3

B2β2
01

]
ε2


DI∗

MK(θj) =




�
2

2µ0R2
0

[
I(I + 1)−K2

]

+
�

2K2

6
[
B1β2

01 +
(

1+η0
1−η0

)2/3

B2β2
01

]
ε2


DI∗

MK(θj) , (19)

equation (17) reduces to ('K = |K| − 0.5)
{

∂2

∂ε2
− ∧2ε2 − 'K('K + 1)

ε2
+ κ2

}
χ(ε) = 0 , (20)

where

∧2 =
3
�2

[
B1β

2
01 +

(
1 + η0

1− η0

)2/3

B2β
2
02

]
Cε , (21)

κ2 =
6
�2

[
B1β

2
01 +

(
1 + η0

1− η0

)2/3

B2β
2
02

]

×
[
E(0)

n − λ0 − �
2

2µ0R2
0

{
I(I + 1)−K2

}]
, (22)

λ0 = EnR
+ Enη

+ Enξ1
+ Enξ2

+ U(R0, η0) ,

EnR
= �ωnR

(
nR + 1

2

)
,

Enξi
= �ωni

(
nξi

+ 1
2

)
, i = 1, 2 ,

Enη
= �ωnη

(
nη + 1

2

)
.




(23)

Equation (20) describes the butterfly motion of the
dinuclear system. It is the differential equation of the
spherical oscillator. Its structure is similar to that of the
well-known rotation-vibration model of deformed even-
even nuclei which has been extensively discussed by Eisen-
berg and Greiner [7]. The solutions are given by

χK,nε
(ε) = C1ε

�K+1 exp(− ∧ ε2/2)

×1F1

[
1
2

(
'K +

3
2
− κ2

2∧
)
; 'K +

3
2
;∧ε2

]
, (24)

where C1 is a normalization constant and the quantity 1F1

is a confluent hypergeometric function,

'K =
1
2
(2|K| − 1) , (25)

E(0)
n = λ0 +

(
'K +

3
2
+ 2nε

)
�ωnε

+
[
I(I + 1)−K2

] �
2

2µ0R2
0

. (26)

Furthermore, we have

�ωnε
= �

[
Cε

3

/{
B1β

2
01 +

(
1 + η0

1− η0

)2/3

B2β
2
02

}]
, (27)

where nε = 0, 1, 2, . . . .
From eq. (26) and the definition of λ0 in eq. (23) we

see that there exist β-vibrations in the ξ1 and ξ2 degrees of
freedom that are analogous to those of normally deformed
nuclei in addition to R- and η-vibrations, while the mo-
tion in the butterfly degree of freedom, is analogous to
γ-vibrations of normally deformed nuclei. Superposed on
these vibrations are the rotations of the dinuclear system
about the Ym-axis.

The quantum numbers I and K in eq. (26) originate
from the rotational term �

2(L̂2− L̂′2
3 )/2µ0R

2
0 and the cou-

pling term �
2L̂′2

3

/(
6
[
B1β

2
01 +

(
1+η0
1−η0

)2/3

B2β
2
01

]
ε2

)
be-

tween rotations and butterfly motion. The angular mo-
mentum L̂′

3 refers to the molecular symmetry axis.
The symmetrized wave function of the system has the

form∣∣ϕ(0)
n

〉
=

∣∣I M K nηnRnξ1nξ2nε

〉
=

C
[
DI∗

MK(θj) + (−1)I−KDI∗
M−K(θj)

]
×χK,nε

(ε)gnη
(η)gnR

(R)gξ1(ξ1)gξ2(ξ2) , (28)

where C is a normalization constant, defined by

C =

√
(2I + 1)

16π2(1 + δKO)
. (29)

The quantum numbers K and I are restricted by the
following values:

K = 0, 1, 2, 3, . . .
I = 0, 2, 4, 6, . . . , if K = 0
I = K, K + 1,K + 2, . . . , if K �= 0


 . (30)
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Thus, band heads may be classified by the 6 quantum
numbers: K, nη, nR, nξ1 , nξ2 , nε.

Since the solution of the unperturbed Hamiltonian,
Ĥ(0) defined in eqs. (7) and (8) has been analytically de-
termined, the solution of the total Hamiltonian, Ĥ, may
be found by the usual methods of the time-independent
perturbation theory which may be represented as follows:

∣∣Ψn

〉
=

∣∣ϕ(0)
n

〉
+

∑
m �=n

〈
ϕ

(0)
m

∣∣Ĥ ′∣∣ϕ(0)
n

〉
E

(0)
n − E

(0)
m

∣∣ϕ(0)
m

〉
, (31)

En = E(0)
n +

〈
ϕ(0)

n

∣∣Ĥ ′∣∣ϕ(0)
n

〉
+

∑
m �=n

∣∣∣〈ϕ(0)
n

∣∣ Ĥ ′∣∣ϕ(0)
m

〉∣∣∣2
E

(0)
n − E

(0)
m

,

(32)
provided that ∣∣∣∣∣

〈
ϕ

(0)
n

∣∣Ĥ ′∣∣ϕ(0)
m

〉
E

(0)
n − E

(0)
m

∣∣∣∣∣ � 1 . (33)

In eqs. (31) and (32), the wave function is given to first
order while the energy is determined to second order. For
Ĥ ′ the first-order perturbation of energy vanishes.

4 Summary and conclusion

The cluster model of a dinuclear system has been success-
ful in explaining several features of nuclear phenomena
including fusion to super-heavy nuclei and parity splitting
in alternate parity bands of the actinides. The work of
Shneidman, Adamian, Antonenko, Jolos and Scheid gives
testimony to these facts.

In this work we have extended the model proposed
by Shneidman et al. to take into account other collective
modes of nuclear molecules proposed by Hess and Greiner.
Apart from the relative motion of the dinuclear system
and mass asymmetry degree of freedom, we introduced
the butterfly motion, the β-vibrations of each nucleus
as well as rotational motion and considered the case
when the dinuclear system may be asymmetric. The
nucleus-nucleus potential, the masses and the dinuclear
radii were expanded in power series about R = R0

and η = η0 as an approximation. This enabled us to
split the total Hamiltonian into an unperturbed part
that can be solved analytically by simple means and
a perturbed part that may be solved by perturbation
techniques. The solution of the unperturbed Hamiltonian

consists of linear harmonic vibrations in relative coordi-
nate R, mass asymmetry η and β-degrees (ξ1, ξ2) of free-
dom, while the butterfly motion, represented by the co-
ordinate ε, is described by a spherical oscillator. Super-
imposed on these vibrations are the rotations of the dinu-
clear system about an axis perpendicular to the molecular
asymmetry axis.

Our model no doubt represents an improvement on
both of the models of Shneidman et al. and Hess et al.,
since the aspects of each of the latter models have been
taken into account in our model. We therefore expect our
model to be able to explain not only nuclear-structure
effects such as the parity splitting in alternating parity
bands of the actinides, but also that with the wave func-
tions that may be calculated, one should be able to deter-
mine other quantities of interest such as transition proba-
bilities from one dinuclear level to the other. Work along
this line is in progress. Finally, an inclusion of γ-vibrations
and “belly-dancer” modes in this model would be straight-
forward.
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